HDU 5301 Buildings(思维)

题意:

$给定N, M\le 10^8的矩形,其中有1个1*1的格子坏掉了$
$现要把矩形切成多个小矩形,使得所有的小矩形都与原矩形边界相连$
$并最小化最大的小矩形面积,求这个面积$

分析:

$可以发现,如果没有坏掉的格子,答案是中心点距离边界的最短距离$
$不管中心点是1个、2个还是4个,我们总可以根据对称性发现中心点们的答案都是一样的$
$所以中心点选一个就可以了$
$问题来了,现在有坏掉的格子,有可能使得答案变大,所以坏掉的格子周围四个点也要考虑$
$如果坏掉的格子占据了中心点呢$
$无所谓,中心点的四邻点必然还有一个中心点$
$(1个中心点的除外,考虑它的四邻点,但是我们已经考虑过啦,因为它也是坏掉的点嘛)$

代码:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
//
// Created by TaoSama on 2016-03-17
// Copyright (c) 2016 TaoSama. All rights reserved.
//
#pragma comment(linker, "/STACK:1024000000,1024000000")
#include <algorithm>
#include <cctype>
#include <cmath>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <iomanip>
#include <iostream>
#include <map>
#include <queue>
#include <string>
#include <set>
#include <vector>
using namespace std;
#define pr(x) cout << #x << " = " << x << " "
#define prln(x) cout << #x << " = " << x << endl
const int N = 1e5 + 10, INF = 0x3f3f3f3f, MOD = 1e9 + 7;
int n, m, x0, y0;
int get(int x, int y) {
if(x == x0 && y == y0) return 0;
int u = x, d = n - x + 1, l = y, r = m - y + 1;
//cross the obstacle
if(x == x0) {
if(y > y0) l = INF;
else r = INF;
}
if(y == y0) {
if(x > x0) u = INF;
else d = INF;
}
return min(min(u, d), min(l, r));
}
int main() {
#ifdef LOCAL
freopen("C:\\Users\\TaoSama\\Desktop\\in.txt", "r", stdin);
// freopen("C:\\Users\\TaoSama\\Desktop\\out.txt","w",stdout);
#endif
ios_base::sync_with_stdio(0);
while(scanf("%d%d%d%d", &n, &m, &x0, &y0) == 4) {
//just one center, because of symmetric
int ans = get(n + 1 >> 1, m + 1 >> 1);
//even if the obstacle occupying the center, but we still ensure the answer
//since iterating the 4 directions, one center must be included
int d[][2] = { -1, 0, 0, -1, 1, 0, 0, 1};
for(int i = 0; i < 4; ++i) {
int x = x0 + d[i][0], y = y0 + d[i][1];
if(x < 1 || x > n || y < 1 || y > m) continue;
ans = max(ans, get(x, y));
}
printf("%d\n", ans);
}
return 0;
}


1. 除非注明,本博文即为原创,转载请注明链接地址
2. 本博文只代表博主当时的观点或结论,请不要恶意攻击
3. 如果本文帮到了您,不妨点一下 下面分享到 按钮,让更多的人看到