HDU 4635 Strongly connected(scc缩点)

题意:

$N, M\le 10^5的简单有向图,无重边自环$
$问最多添加多少条边使得这个图不成为强联通图,如果已经是输出-1$

分析:

$参考出题人题解啦$
$图肯定可以分成两个部X和Y,只有X\to Y的边没有T\to X的边这样图就不强联通$
$那么要使得边数尽可能的多,则X部肯定是一个完全图,Y部也是$
$同时X部中每个点到Y部的每个点都有一条边$
$假设X部有x个点,Y部有y个点,有x+y=N,同时边数E=xy+x(x-1)+y(y-1)$
$整理得E=N^2-N-xy,当x+y为定值时,二者越接近,xy越大$
$要使得边数最多,那么X部和Y部的点数的个数差距就要越大$
$所以首先对于给定的有向图scc缩点$
$对于缩点后的每个点,如果它的出度或者入度为0,那么它才有可能成为X部或者Y部$
$所以只要求缩点之后的出度或者入度为0的点中,包含节点数最少的那个点$
$令它为一个部,其它所有点加起来做另一个部,就可以得到最多边数的图了$
$ans = E-M$
$时间复杂度为O(N+M)$

代码:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
//
// Created by TaoSama on 2016-03-25
// Copyright (c) 2016 TaoSama. All rights reserved.
//
#pragma comment(linker, "/STACK:102400000,102400000")
#include <algorithm>
#include <cctype>
#include <cmath>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <iomanip>
#include <iostream>
#include <map>
#include <queue>
#include <string>
#include <set>
#include <vector>
using namespace std;
#define pr(x) cout << #x << " = " << x << " "
#define prln(x) cout << #x << " = " << x << endl
const int N = 1e5 + 10, INF = 0x3f3f3f3f, MOD = 1e9 + 7;
vector<int> G[N];
int dfn[N], low[N], in[N], id[N], scc, dfsNum;
int stk[N], top;
void tarjan(int u) {
dfn[u] = low[u] = ++dfsNum;
stk[++top] = u;
in[u] = true;
for(int v : G[u]) {
if(!dfn[v]) {
tarjan(v);
low[u] = min(low[u], low[v]);
} else if(in[v]) low[u] = min(low[u], dfn[v]);
}
if(low[u] == dfn[u]) {
++scc;
while(true) {
int v = stk[top--];
in[v] = false;
id[v] = scc;
if(v == u) break;
}
}
}
int n, m;
int main() {
#ifdef LOCAL
freopen("C:\\Users\\TaoSama\\Desktop\\in.txt", "r", stdin);
// freopen("C:\\Users\\TaoSama\\Desktop\\out.txt","w",stdout);
#endif
ios_base::sync_with_stdio(0);
int t; scanf("%d", &t);
while(t--) {
scanf("%d%d", &n, &m);
for(int i = 1; i <= n; ++i) G[i].clear();
for(int i = 1; i <= m; ++i) {
int u, v; scanf("%d%d", &u, &v);
G[u].push_back(v);
}
scc = dfsNum = 0;
memset(dfn, 0, sizeof dfn);
for(int i = 1; i <= n; ++i) if(!dfn[i]) tarjan(i);
static int kase = 0;
if(scc == 1) {printf("Case %d: -1\n", ++kase); continue;}
vector<bool> in(N, 0), out(N, 0);
for(int i = 1; i <= n; ++i) {
int u = id[i];
for(int j : G[i]) {
int v = id[j];
if(u == v) continue;
out[u] = in[v] = true;
}
}
vector<int> cnt(N, 0);
for(int i = 1; i <= n; ++i) ++cnt[id[i]];
int x = INF;
for(int i = 1; i <= scc; ++i)
if(!in[i] || !out[i]) x = min(x, cnt[i]);
int y = n - x;
long long ans = 1LL * n * n - n - 1LL * x * y - m;
printf("Case %d: %I64d\n", ++kase, ans);
}
return 0;
}


1. 除非注明,本博文即为原创,转载请注明链接地址
2. 本博文只代表博主当时的观点或结论,请不要恶意攻击
3. 如果本文帮到了您,不妨点一下 下面分享到 按钮,让更多的人看到