BZOJ 4260 Codechef REBXOR(xor trie)
题意:
$2\le N\le 4\times 10^5个数,A_i\le 10^9$
$求(A_{l_1}\oplus A_{l_1+1}\oplus\cdots\oplus A_{r_1}) + (A_{l_2}\oplus A_{l_2+1}\oplus\cdots\oplus A_{r_2})$
$且1\le l_1\le r_1 < l_2 \le r_2,的最大值$
分析:
$xor trie配合简单dp思想$
$我们发现这个是个连续异或和,经典的技巧$
$设prefix[i]:=A_1\oplus A_2\oplus\cdots\oplus A_i$
$那么显然我们可以得到xor(l, r)=prefix[r]\oplus prefix[l-1]$
$所以一个显然的想法就是枚举4个点,但是可以通过预处理来降低复杂度$
$维护prefixMax[i]:=以i结尾的区间的最大连续异或和,这个可以用过trie来得到$
$把这个再前缀max一下,就可以得到\le i的区间的最大连续异或和了$
$再倒着搞一遍就可以解决了$
$为了方便可以多插入1个0$
$时间复杂度O(nb)$
代码:
//
// Created by TaoSama on 2016-04-21
// Copyright (c) 2016 TaoSama. All rights reserved.
//
#pragma comment(linker, "/STACK:102400000,102400000")
#include <algorithm>
#include <cctype>
#include <cmath>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <iomanip>
#include <iostream>
#include <map>
#include <queue>
#include <string>
#include <set>
#include <vector>
using namespace std;
#define pr(x) cout << #x << " = " << x << " "
#define prln(x) cout << #x << " = " << x << endl
const int N = 4e5 + 10, INF = 0x3f3f3f3f, MOD = 1e9 + 7;
struct Trie {
static const int M = 32 * 4e5 + 10, S = 2;
int root, sz;
int nxt[M][S];
int newNode() {
memset(nxt[sz], -1, sizeof nxt[sz]);
return sz++;
}
void init() {
sz = 0;
root = newNode();
}
void insert(int x) {
int u = root;
for(int i = 31; ~i; --i) {
int c = x >> i & 1, &v = nxt[u][c];
if(v == -1) v = newNode();
u = v;
}
}
int query(int x) {
int u = root, ret = 0;
for(int i = 31; ~i; --i) {
int c = x >> i & 1;
if(~nxt[u][c ^ 1]) {
ret |= 1 << i;
u = nxt[u][c ^ 1];
} else u = nxt[u][c];
}
return ret;
}
} trie;
int n, a[N], sum[N], pre[N];
int main() {
#ifdef LOCAL
freopen("C:\\Users\\TaoSama\\Desktop\\in.txt", "r", stdin);
// freopen("C:\\Users\\TaoSama\\Desktop\\out.txt","w",stdout);
#endif
ios_base::sync_with_stdio(0);
scanf("%d", &n);
sum[0] = sum[n + 1] = 0;
for(int i = 1; i <= n; ++i) {
scanf("%d", a + i);
sum[i] = sum[i - 1] ^ a[i];
}
trie.init(); trie.insert(sum[0]);
for(int i = 1; i <= n; ++i) {
pre[i] = max(pre[i - 1], trie.query(sum[i]));
trie.insert(sum[i]);
}
int ans = 0;
trie.init(); trie.insert(sum[n + 1]);
for(int i = n; i > 1; --i) {
sum[i] = sum[i + 1] ^ a[i];
ans = max(ans, pre[i - 1] + trie.query(sum[i]));
trie.insert(sum[i]);
}
printf("%d\n", ans);
return 0;
}